
The Influence of Time Preferences on the 
Development of Obesity: Evidence from a 
General Population Longitudinal Survey 
 

Ewan Gray 

 

Health Economics Research Unit (HERU), University of Aberdeen 

 

Short Abstract 

In the economics of health behaviours literature individual’s preferences are 

hypothesised to be important determinants of obesity. Time preferences describe how 

people value the timing of costs and benefits and have particular relevance for 

obesity. This is because perceived costs of obesity (loss of health and longevity) occur 

far in the future while perceived benefits of calorie-imbalance (utility of food 

consumption and alternative uses of time instead of physical activities) are immediate. 

Aims 

This study aims to improve knowledge of the potential effect of time preferences on 

the development of obesity by exploiting an existing longitudinal data set.   

Methods 

The DHS is a household survey comprising of 2000 households representative of the 

Netherlands population. Seventeen years of data are available for analysis. The 

Consideration of Future Consequences Scale (CFCS) is used as the measure of time 

preferences. Four different econometric models are used to explore the effect of time 

preferences on the development of obesity. 

Conclusions 

Results support a small but statistically significant effect of time preferences on risk 

of developing obesity. The high prevalence of obesity means this small effect has 

some public health importance. 
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Introduction 

 

Obesity is one of the greatest public health issues in many societies today. What 

causes some individuals to become obese while others do not? What has caused the 

dramatic rise in the prevalence of obesity? These questions are the subject of much 

research and theory. 

 

One factor that has been suggested in response to both questions is individual’s 

preferences. Time preferences, the preferences governing the subjective weighting of 

costs and benefits occurring at more or less distant points in time, have particular 

relevance to obesity. It is hypothesised that present-orientated time preferences are 

associated with a greater likelihood of becoming obese. This is because present-

orientated individuals will place very low values on long-term future health benefits 

when making decisions that determine their future BMI such as dietary or physical 

activity choices. 

 

Previous studies, reviewed below (table 1), show an association of more present-

orientated time preferences with greater BMI. This study furthers this line of research 

by making use of a longitudinal data set to provide a stronger test of the time 

preference and obesity association. 

 

Theoretical Basis 

Two converging roots can be found in the theoretical literature for the time preference 

and health (including obesity) relation. These can be labelled the economics root and 

the psychology root. 

 

The economics root makes particular reference to Grossman (1972) and the health 

capital model. This model proposes that individuals have health stocks that are 

depleted as they age. Investments may be made to increase these stocks or postpone 

depletion. These may take the form of health care or engaging in health promoting 

behaviours and not engaging in health damaging ones. The extent of investment 

depends on costs to the individual measured by the “shadow price” of health (time, 

money, forgone pleasurable activities). The costs may often occur far earlier than the 

benefits of health investment and it is for this reason that time preferences play an 

important role. The extent an individual values future benefits and costs less and 

present costs more determines the attractiveness of potential health investments. 

 

In the health capital model the product of health capital is a flow of healthy days from 

a given level of health capital stock. As the level of the stock increases more healthy 

days are available. However there are diminishing returns to health capital.  
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H is health capital stock; h is number of healthy days. 

 

The change is heath stock over time is determined by net investment (depreciation 

plus investment) as: 
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  is gross investment and   is the rate of depreciation of health stock. 

 

Health investment in the health capital model is determined by the equilibrium of the 

supply of health from household production and demand for health. This occurs when 

the marginal benefit of a unit of health equals the marginal cost of supplying it. 

Marginal benefit is constructed as a sum of wage and non-wage benefits. The 

individual seeks to maximize the present value of the sum of wage and non-wage 

benefits less health investment costs across all future time periods, given by the 

expression (Dardanoni 1986): 
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  is the individual’s time preference rate,   is the wage benefit and   is the non-wage 

(psychic) benefit.   is the marginal cost of a health investment. 

 

Incorporating health stock depreciation by replacing investment (I) with net 

investment (H +  H), continuing to discount all arguments by the time preference 

rate, the individual’s maximization problem is then given by: 
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A solution via Euler’s equation shows equilibrium can be found at: 
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Therefore when r is greater )(' Hh is greater, as      , this implies that the 

maximizing level of health stock (H) is smaller when time preference rate is higher. 

An example of a smaller health stock would be obesity compared to normal BMI. 

 

The psychology root is more widely dispersed. A clear time preference and health link 

was established with the development of the Consideration of Future Consequences 

scale (CFCS) (used in this study) (Strathman 1994). The issue of long term health 

effects of health related behaviours is referenced as the key concern in measuring the 

degree to which an individual considers future compared to present outcomes. The 

CFCS-health link can be understood in the context of several psychological theories 

that incorporate a final common pathway from intentions to behaviour (see figure 1) 

such as the theory of planned behaviour, theory of reasoned action, attitude-behaviour 

theory and protection-motivation theory among others (Sheeran 2002). In these 

paradigms an individual’s time preferences influence intentions that are the primary 

determinant of health-related behaviours.  

  



 

Figure 1 – General Intention Behaviour Model 

 

 

 

 

 

 

 

  

 

 

 

 

A popular model in health psychology is the Transtheoretical model (DiClemente and 

Prochaska, 1982). This is a 5-stage model of behaviour change and maintenance. In 

the precontemplation stage there is no intention to change behaviour. When an 

individual moves to the contemplation stage there is intention to change, this may 

then lead to preparation and eventual action. Time preferences can be viewed as a 

determinant of movement to the contemplation stage (figure 2).  

Figure 2 – Transtheoretical Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other 

factors 

influencing 

intentions 

Time 

Preferences 

Intentions 
Health 

Behaviours 

Precontemplation 
-No intention to change 

Contemplation 

-Intends to change 

Time Preferences 

Action 
-Changed behaviour (<6 months) 

Preparation 
-Initial actions to change 

Maintenance 
-Changed behaviour (>6 months) 



Empirical Findings 

The role of time preference as a determinant of health has been sought empirically 

across a range of major health endpoints, intermediate outcomes and health-related 

behaviours. As most of these are not analogous to obesity discussion is limited only to 

those studying the effect of time preferences on obesity and BMI. 

 

Nine previous studies have investigated this relationship; these are summarized in 

table 1. All are observational in nature and five follow a cross-sectional design. The 

earliest study (Komolos et al, 2004) is an ecological study using aggregate data from 

the USA.  

 

Komolos et al compared trends in (lagged) savings rates and consumer debt to obesity 

trends in the NHANES cohort for the period 1970-2000. These trends generally 

moved in the same direction with the rate of increase accelerating during the same 

periods. This offers preliminary evidence in favour of an effect of TP on obesity. 

  

Cross-sectional studies improve the strength of the evidence for an effect of TP by 

using individual level data. Making further use of the NHANES cohort data Smith et 

al (2005) construct saving/dissaving dummy variables and use these as time 

preference proxies in regression analyses with BMI or obesity dependents. Dissaving 

was found to have a statistically significant but small effect but only in some ethnicity 

and gender sub-groups.     

 

A greater variety of TP measures and proxies were explored by Borghans and 

Golsteyn (2006) using data from the 2004 wave of the DHS household panel 

(Netherlands). Each alternative measure was used as an independent variable in a 

separate regression with BMI as the dependent. These include: 11-items of the CFCS, 

savings variables, subjective planning horizon and time preference rate. This study 

provides further evidence for a small effect for time preference measures. Similar to 

Smith et al (2004) the effect is not significant consistently across both genders and all 

alternative measures. 

 

A cross-sectional study in North East England (Adams and White, 2009) used a 

meditational analysis to assess the hypothesis of time preference, measured by CFCS, 

mediating the relationship between socio-economic position and BMI or obesity. 

CFCS was found to have a small but statistically significant effect on BMI. Adams 

and Nettle (2009) found a significant effect for CFCS on BMI but not for other time 

preference variables.  

 

Ikeda et al (2010) used time preference rate as the preferred measure in a cross-

sectional study with a Japanese population representative sample. A larger sample 

size allows this study to find a small but statistically significant association between 

time preference and BMI in the expected direction. A significant effect on a binary 

dependent (BMI>25) is found while the effect on a binary dependant (BMI>30) is 

non-significant. This could be due to the differences in BMI distribution in Japanese 

compared to European and North American populations. 

 

Overall the evidence from these studies suggests a small but statistically significant 

association of present-orientated time preferences with greater BMI. Evidence for an 

effect on obesity (BMI>30) is lacking. Some studies only found significant effects 



within sub-samples suggesting previous studies may have been underpowered to 

detect a small real effect of time preference on development of obesity.  

 

Aims 

 

This study aims to improve knowledge of the potential effect of time preferences on 

the development of obesity by exploiting an existing longitudinal data set.  In addition 

to improving statistical power from previous studies this will allow analyses that 

reduce the reverse causality and omitted variable biases that are concerns in cross-

sectional studies.   

 

Data 

This study uses the full DHS dataset. The DHS (DnB) is a household panel survey 

conducted in the Netherlands. Currently 16 waves of data from 1993-2009 are 

available. The original sample comprised 2000 households representative of the 

Netherlands populations. Households are replaced when drop-outs occur however by 

2009 there appear to be only 1660 households. The survey is self-completed online 

with arrangements made for those without a computer.  

 

The measure of time preferences available in this data is the Consideration of Future 

Consequences Scale (CFCS). This is an 11-item scale in which each item is a 

statement relating to how present or future orientated a person is. Respondents are 

asked to what extent they themselves conform to each statement on a scale of 1 to 7. 

This gives an overall score of 11 to 77 where 77 is the most present-orientated 

(corresponds to high TPR) and 11 is the most future orientated (low TPR). Examples 

of the statements are: 

 

“I am only concerned about the present, because I trust that things will work 

themselves out in the future.” 

 

“With everything I do, I am only concerned about the immediate consequences (say a 

period of a couple of days or weeks).” 



Table 1 – Selected Previous Studies 

 

Study 

(Author, 

date) 

Time 

Preference 

Measure 

BMI 

Dependent 

Categorical 

or Binary 

Dependent 

Study 

Sample 

Result BMI Result 

Categorical 

Ikeda et 

al, 2010 

TP rate Yes Yes 

1.BMI>25 

(1,0) 

2.BMI>30 

(1,0) 

2870, 

Japan 2004 

0.273** 1.BMI>25 

0.037** 

2.BMI>30 

-0.003 

Adams 

and 

White, 

2009 

CFCS Yes No 804, 

North East 

England  

0.67**  

Adams 

and 

Nettle, 

2009 

CFCS 

ZTPI 

TP rate 

(hyperbolic) 

Yes 

(logBMI) 

No 423, 

USA 

CFCS: 

1.00** 

ZTPI: 0.43 

TP rate: 

0.44 

 

 

Borghans 

and 

Golsteyn, 

2006 

TP rate 

11 items of 

the CFCS 

Yes No 2052, 

Netherlands 

2004 

TP rate: 

M:0.123* 

F:0.066 

CFCS: 

2 out of 11 

items 

significant 

at .05 level 

for men only 

 

Smith et 

al, 2005 

1.“Dissaving”  

2.”No 

Saving” 

dummy 

variables 

Yes Yes 

BMI>30 

(1,0) 

Approx. 30 

million, 

USA 

1.M:0.594** 

F:0.461 

2.M:0.529** 

F:0.533** 

1.M:0.282** 

F:0.214 

2.M:0.210 

F:0.283** 

*** =P<0.01, **=P<0.05, *=P<0.1,M=male and F=female  

ZTPI = Zimbardo Time Perspective Inventory 

 

Note on Selection of Studies: 

Four studies rejected on for reasons of study design and quality (Komlos et al, Weller 

et al, Rasmussen et al, Zhang and Rashad). Komlos et al used group level data while 

Weller et al followed a case-control design, these were excluded based on study 

design incomparability. Non-comparable TP measures were issues for Zhang and 

Rashad (willpower as proxy for TP), Weller et al (AUC) and Rasmussen et al (“bites 

of food” discount rate). Further Rasmussen et al and Weller et al used samples of 

students only. Rasmussen et al used percentage body fat rather than BMI as the 

outcome measure. 



 

Methods  

 

Four alternative statistical approaches are taken by this study; panel data regression 

(PDR) analysis using a continuous BMI dependent, PDR using an obesity binary 

response dependent, PDR using an obesity binary response dependent conditional on 

a lagged dependent and duration analysis (also called survival analysis). All 

approaches seek to determine the effect of time preference on obesity controlling for 

socio-demographic variables. 

 

Using an obesity binary response variable, equal to 1 if BMI is greater than 30 and 0 

otherwise, is justified by the fact that it is unhealthy BMI in general and obesity in 

particular that is of interest to health researchers rather than the causes of differences 

in BMI levels within the ‘healthy’ range (18-25). This is particularly important if the 

effect of time preference on BMI is non-linear or heterogeneous. There are theoretical 

and empirical (Ikeda et al 2010) reasons to believe present-orientated preferences 

would be associated with lower BMI for some groups, for example those at risk of 

being underweight (BMI<18). 

 

Panel data regression and duration analysis methods both use the data from all waves 

of the survey improving statistical power while providing consistent parameter 

estimates and standard errors. The motivation for using different econometric models 

is to make further use of the panel structure of the data beyond improving statistical 

power. Conditioning on a lagged dependent variable gives an indication of the role of 

state-dependence and will also to some extent control for reverse causality (greater 

BMI leading to more present-oriented time preferences). Duration analysis performs 

this same function but with some differences. Models specified with the lagged 

dependent can be interpreted as a first-order Markov process, i.e. the probability of a 

state transition is being estimated assuming no influence of history of previous state 

transitions. Duration models have two differences. Firstly previous state history may 

have some influence, for example ceteris paribus hazard may increase for every 

period before occurrence of obesity. Secondly obesity is considered to be an 

absorbing state meaning individuals are removed from the analysis after the first 

observation of obesity and provide no further information. 

 

CFCS was chosen as the best available measure of time preference in the data-set. 

CFCS was measured in every wave while time preference rate was only measure once 

in 2004. CFCS has previously been shown to be highly correlated with time 

preference rate and alternative proxies (Borghans and Golsteyn 2006, Adams and 

Nettle 2009). The one period lag of CFCS is used due to concern of reverse causality 

and because the lagged value is more likely to reflect time preference in the period 

relevant for year-to-year weight gain. 

 

Using the full CFCS makes an important assumption that all unit increments on this 

scale are equal both in relation to where in the range of CFCS scores these occur and 

which individual items they originate from. This assumption is made on the basis that 

the CFCS is a validated measure of time perspective/time preference, its development 

considered issues of redundant elements and scaling. This could be further explored in 

a sensitivity analysis. 



Econometric Models 

Panel Data Models 

Continuous BMI Dependent 

 

Obesity is most commonly defined by BMI (>30). Therefore an obvious choice of 

dependent variable is BMI. This is the most efficient way to use the BMI data from 

this data set. This has been the outcome measure of choice in previous studies. BMI 

models are included in this study primarily for comparison with previous studies. 

 

BMI is modelled as a linear function of the explanatory variables following the 

general model (1.1).  

 

                 (1.1) 

    

    is the vector of explanatory variables and     is the error term. 

 

The explanatory variables in the model are CFCS, age, gender and education. 

Education is coded as two dummy variables summarizing highest educational 

attainment, one for university education and one for pre-university or senior 

vocational education (the reference group is less than pre-university or senior 

vocational education). Income is included in some models as log of the net income 

composite measure complied by the DHS (not reported). Alternative specifications for 

the control variables (such as quadratic for age) and interaction terms are explored. 

 

This model can be estimated by OLS. Errors are likely to be correlated across waves 

by individual therefore in a pooled model the standard errors will be inaccurate. These 

are replaced by sandwich estimates. 

 

A key concern with such models is omitted variable bias (OVB). Panel data give the 

opportunity to reduce such bias. Time-invariant individual effects are explicitly 

included in fixed or random effects models. This controls for unobserved individual 

heterogeneity, at least for time-invariant variables. These require variation over time 

of the variables of interest, for the fixed effects this is an absolute requirement, and 

therefore may not appropriate in the context of time preferences because there is little 

variation over time of time preferences for most individuals. These models are 

specified as: 

 

                   (1.2) 

 

   is the time-invariant individual effect and     is a time-varying random error term 

that is independent over waves. 

 

Fixed effect estimators use only the within individual variation in the dependent and 

explanatory variables. These can be estimated by including individual specific 

dummy variables in an OLS regression. Random effects models assume the individual 

effect is uncorrelated with the explanatory variables,    (      )    . Radom 

effects are estimated by generalized least squares (GLS), using the covariance 



structure specified by the above assumption, resulting in estimates that are a matrix-

weighted average of the fixed and between effects.  

 

Probit Models for Panel Data 

 

These data are appropriate for analysis using binary response models. Models such as 

these focus on the outcome of obesity rather than BMI. Probit models are a class of 

index model for binary responses, using the probit link function. The dependent 

variable is binary, coding obese as 1 and non-obese as 0. There are repeated 

observations (max = 16) on 7413 individuals.  

 

The model specifications of Jones et al (2007), adapted from general health to obesity 

and the context of these data, are followed by this study. Control variables are the 

same as those used in the duration model. 

 

Pooled probit models use the data as if it were a cross-section, within and between 

individual variation are exploited equivalently. This assumes that observations are 

independent across waves. This is unlikely to be correct because errors are likely to be 

correlated across waves for the same individual. However, the coefficients from a 

pooled model are consistent despite this misspecification (Jones et al 2007). The 

standard errors are replaced by sandwich estimates that are robust to within-individual 

clustering.  

 

The latent variable specification of the pooled probit: 

There are t repeated observations on each individual i. When the continuous latent 

variable ity *  is greater than zero the binary dependent ity equals 1. 

 

0*1  itit yy  

ititit uxy  *     (2.1) 

ity *  is a function of the explanatory variables itx  and error term itu . For the probit 

model itu  are independent over t and normally distributed. 

The marginal probability of being obese at wave t is then: 

)][()/1( ititit xxyP   

 

Utilising the panel structure of the data, a random effects probit model is specified, 

parameterizing the individual effect to control for unobserved individual 

heterogeneity, using the same terms as (1.2): 

 

itiitit xy  *     (2.2) 

 

Models (1.1) and (1.2) predict the probability a randomly selected individual from a 

randomly selected wave will be obese. 

 



 

Dynamic Probit Models 

 

Focussing on the observed movements into and out of the obese category rather than 

simple observation of obesity models can reduce reverse causality bias and provide a 

stronger causal test of the hypothesis. To explain the causes of individuals becoming 

obese a state transition probability interpretation is required. Models that capture state 

dependence by including the lagged dependent variable among the explanatory 

variables can achieve this. Models specified with a lagged dependent can be 

interpreted equivalently to a first-order Markov process, i.e. the probability of a state 

transition is being estimated assuming no influence of history of previous state 

transitions. The first dynamic model: 

 

itiititit yxy   1*      (3.1) 

1ity  is the obesity state in the previous time period while   is the parameter 

estimated for this regressor. i  and it  are defined as in model (1.2). 

 

By including the lagged dependent among the exogenous variables we assume the 

initial observation of the dependent to be exogenous (Heckman 1981). In fact, this 

would not be expected to be the case. We would expect the initial observation to be 

affected by the explanatory variables in the model. One method to account for this 

suggested by Chamberlain (1982) is to include all leads and lags of explanatory 

variables in the model in addition to the initial observation. An alternative approach 

from Jones et al (2007) is to include the within individual means of explanatory 

variables (an approach developed by Mundlak (1978) to deal with correlated effects) 

and the first period dependant in addition to a one-period lagged dependant. The 

unobserved heterogeneity is assumed to be uncorrelated with the explanatory 

variables conditional on the time averages of these variables. The individual effect is 

then parameterized as: 

 

iii uxy  21101   

 

1iy  is the initial observation of the dependent variable and ix is the mean for 

explanatory variable x over all waves in the sample for individual i. iu  is assumed to 

be normally distributed and independent of the explanatory variables, initial 

conditions and it . 

 

Using the random effects specification the model is then,  

 

itiiiititit uxyyxy    21101*    (3.2) 

 

  



Duration Analysis 

 

Non-parametric methods allow a broad overview of the data and highlight survival 

differences between groups. A Kaplan-Meier survival plot allows visualisation of 

differences in survival by CFCS score quartile. Non-equality of the survival functions 

of the CFCS quartiles is tested by the log-rank test.  

 

Semi-parametric Cox regression estimates the effect of CFCS controlling for observed 

covariates. Cox regression is semi-parametric because it does not specify a 

distribution of survival times (equivalent to not specifying the underlying hazard 

function).  

 

Hazard is the instantaneous probability of event occurring at time t conditional on 

survival to time t. The Cox regression model for the hazard of obesity used in this 

analysis: 

 

)...exp()()|( 2211 NN xxxthxth  
  (4.1) 

 
 

)(th  is the base-line hazard function. Nxx ,1  are the exogenous variables and N ,1  

are the parameters to be estimated. 

 

This model allows the explanatory variables to influence hazard only through a 

constant multiplicative effect on the base-line hazard function (the proportional 

hazards assumption). The (exponentiated) coefficients are interpreted as hazard ratios. 

 

The explanatory variables in these models are CFCS, age, gender, education dummies 

and initial BMI level. Starting closer to BMI of 30 means BMI>30 will occur more 

rapidly. Controlling for initial BMI means the estimates for other explanatory 

variables relate only to their effects on BMI over the observation period.     

 

Results 

Summary of Sample 

The summary table (2) presents means and proportions for the main variables of 

interest across each wave. This includes only observations with valid CFCS and BMI 

values because these are the observations that will be included in the analysis. More 

observations are usable if either CFCS or BMI is treated as non-time-varying or 

values are imputed across waves. In this analysis CFCS values are filled forward, i.e. 

missing values of CFCS are replaced by the CFCS value from the previous wave 

when possible. This is done largely because CFCS was not measured in 2008 and 

CFCS variation within individual across waves is low. Education variables are only 

recorded from 2002. In the following analysis education is not treated as time varying 

and the highest recorded educational attainment is assigned by individual to 

observations in all waves. 

 

  



Table 2 – Summary Statistics 

 Mean or % (s.d.) 

Year BMI Age CFCS Female University Secondary Obs 

1996 24.4 

(3.5) 

47 

(14.2) 

41.63 

(11.1) 

45.3% n/a n/a 3255 

1997 24.8 

(3.8) 

48.1 

(14.5) 

42.7 

(10.6) 

45.4% n/a n/a 2527 

1998 24.8 

(3.7) 

49.5 

(15.1) 

43.2 

(10.5) 

43.4% n/a n/a 1293 

1999 25.2 

(3.8) 

50.1 

(14.7) 

43.8 

(10.9) 

41.4% n/a n/a 1307 

2000 24.8 

(3.4) 

47.2 

(15) 

43.2 

(7.4) 

43.3% n/a n/a 1030 

2001 25.4 

(3.8) 

47.5 

(13.9) 

43.9 

(8.8) 

44.5% n/a n/a 1538 

2002 25.4 

(3.8) 

47.4 

(14.4) 

43.6 

(8.3) 

44.7% 2% 7.9% 1328 

2003 25.6 

(4) 

49.1 

(14.4) 

43.5 

(8.9) 

44% 3.9% 14% 1328 

2004 25.7 

(4) 

50.3 

(14.1) 

42.2 

(8.1) 

45.8% 4.8% 17.9% 1714 

2005 25.7 

(4.2) 

49.6 

(15.4) 

42.4 

(8.3) 

48.3% 6% 23% 1787 

2006 25.8 

(4.1) 

51.1 

(15.4) 

42.6 

(8.2) 

46.8% 5.6% 22.9% 1657 

2007 25.8 

(4.1) 

51.5 

(15.2) 

42.6 (8) 46.1% 6.8% 25.7% 1688 

2008 25.9 

(4) 

52.5  

(15) 

n/a 45.9% 7.5% 27.7% 1762 

2009 26 (4) 54.9 

(14.4) 

42.9 

(8.2) 

44.4% 8.9% 26.9% 1511 

 

 

 

Between 1996 and 2009 age, BMI, CFCS increased. Educational attainment also 

increased although this could be largely due to improving recording of education 

variables. Increased educational attainment could reflect higher educational 

attainment in young entrants of later waves. Age and BMI would be expected to 

increase in an adult sample followed over time. In addition, recent time trends for 

Western European populations show increasing age and BMI. A greater and 

increasing in the proportion of men is opposite to what would be expected due to 

mortality differences. 

  



Continuous BMI Linear Models 

Table 3 – BMI Models 

Variable 1 – Pooled OLS 2 – Fixed Effects 3 – Random Effects 

CFCS (lagged 1 

period in 2 & 3) 

0.022***(0.004) 0.004*(0.002) 0.005***(0.002) 

Age 0.25***(0.019) 0.212***(0.02) 0.19***(0.014) 

Gender (Male) 0.221*(0.113)  -0.994***(0.29) 

University -0.427*(0.248)  -0.406(0.31) 

U. Secondary 0.788***(0.178)  0.892***(0.163) 

Age
2
 -0.002***(0.0002) -0.001***(0.0001) -0.001***(0.0001) 

Gender*Age   0.025***(0.006) 

N (Obs) 7413(21515) 5217(15901) 5217(15901) 

R
2
 0.041 0.017 0.025 

rho   0.9 

Coef.(s.e.) *=P<0.1 **=P<0.05 ***=P<0.01 

 

The effect of CFCS on BMI is in the expected direction in all models. More present 

orientated preferences are associated with greater BMI. This is highly statistically 

significant in the pooled model and random effects (p<0.001) but is only significant at 

the p<0.1 level for the fixed effects.  

 

  



Probit Models 

 

Results from models 1 to 4 are presented in table 3 

 

Table 4 – Probit Models 

Variable Model 1 – Pooled 

Probit 

2 – Random 

effects Probit 

3 – R.e. with state 

dependence 

4- R.e. with first 

period dependent 

and TV means 

CFCS 0.008***(0.002) 0.014***(0.004) 0.011***(0.003) 0.012** (0.005) 

Age 0.0567***(0.013) 0.119***(0.027) 0.097***(0.018) 0.163***(0.052) 

Gender 

(Male) 

-0.673***(0.203) -2.33***(0.476) -1.19***(0.296) -1.59***(0.408) 

University -0.273*(0.155) -0.384(0.412) -0.352(0.271) -0.56(0.375) 

U. Secondary 0.146*(0.077) 0.537***(0.179) 0.246**(0.118) 0.168(0.162) 

Age
2
  -0.0006*** 

(0.0001) 

-0.0003*** 

(0.0002) 

-0.001***  

(0.0002) 

-0.001**(0.0005) 

Gender*Age  0.008**(0.004)  0.035***(0.009) 0.016***(0.006) 0.046***(0.018) 

Obese at t-1   1.7***(0.058) 1.15***(0.069) 

Obese at t =1    2.28***(0.138) 

Means     

MCFCS    0.008(0.008) 

Mage    -0.018(0.058) 

Mage
2
    -0.0003(0.0005) 

Mage*Gender    -0.023(0.018) 

N(obs) 5183(15737) 5183(15737) 5183(15737) 6199 (18737) 

rho  0.955(0.002) 0.687 (0.022) 0.780(0.015) 

 

 

In all models CFCS has a small but statistically significant effect on obesity. The 

effects of the control variables are similar across the models with some variation 

among the education variables.  

 

Using the predicted probabilities form model 1, with other covariates fixed at their 

sample means, an increase of CFCS from mean to one standard deviation above mean 

shows a relative risk of 1.133. A one standard deviation greater than average CFCS 

score on average predicts a 13% increased risk of obesity.  This is problematic for 

models 2,3 and 4 because of the presence of strong individual effects (high rho). 

Assessing the marginal effect of CFCS at the average of the covariates means 

assessing the probability of a positive outcome when   is 0 (the mean by assumption), 

predicted probability of positive outcome at       is extremely low. The relative 

risks are then largely meaningless. For model 2 relative risk is increased by 124%, 

model 3: 12.8% and for model 4: 34.4%. Odds ratios (95% CIs) for a one standard 

deviation increase in CFCS, from identically specified logistic regressions (not 

reported), are: model 1: 1.15 (1.06, 1.25), model 2: 1.25 (1.1, 1.43), model 3: 

1.21(1.08, 1.36), model 4: 1.23 (1.03, 1.45).  

 

  



Duration Analysis 

Summary Statistics – Duration Analysis 

19673 Observations 

7417 Individuals 

62789 Person-years time at risk 

916 Failures 

 

Figure 3 - Kaplan-Meier Survival Plot by CFCS Quartile 

 
 

Log-rank test (      ( )     ( )     ( )     ( )), χ2 = 25.19, p <0.0001   

 

There is a clear difference in the survival functions of the upper CFCS quartiles from 

the lower CFCS quartiles with the upper quartiles being more likely to become obese 

over the period. The Log-rank test confirms this difference is statistically significant. 

 

Cox Regression 

Variable Model 1 2 – Quadratic Age 3 - Interactions 4- Initial BMI 

CFCS 0.009**(0.004) 0.011***(0.004) 0.011***(0.004) 0.013*** (0.004) 

Age -0.002(0.003) 0.084***(0.018) 0.085***(0.018) 0.052**(0.021) 

Gender 

(Male) 

-

0.420***(0.075) 

-0.413***(0.075) -0.994***(0.298) 0.224(0.311) 

University -0.266(0.282) -0.156(0.283) -0.160(0.283) 0.226(0.284) 

U. Secondary 0.462***(0.11) 0.523***(0.111) 0.517***(0.111) -0.014(0.115) 

Age
2
   -0.001***(0.0002) -0.001***(0.0002) -0.001***(0.0002) 

Gender*Age     0.012**(0.006) -0.006(0.006) 

Initial BMI    0.271***(0.006) 

Coef.(s.e.) *=P<0.1 **=P<0.05 ***=P<0.01 



 

Model 4 demonstrates that including base-line BMI CFCS still has an effect on the 

hazard of obesity. The effect of CFCS is not only due to association with base-line 

BMI, meaning there is an effect on observed weight gains to obesity. 

 

The hazard ratio for standardized CFCS in model 4 is 1.151 (1.07, 1.24). A one 

standard deviation greater CFCS score is associated with a 15% increased hazard of 

obesity. 

Discussion 

 

Time preferences, as measured by the CFCS scale have a small but statistically 

significant effect on the development of obesity after controlling for age, gender and 

education. Due to the high prevalence of obesity this small effect is of some public 

health importance.  

 

The econometric models using a binary obesity dependent suggest a larger effect for 

CFCS than those using a continuous BMI dependent. This could be due to the issue of 

heterogeneous effects. 

 

The fixed effects and random effects models for BMI suggest a smaller effect for 

CFCS than the pooled model. This may be an underestimate of the true CFCS effect 

due to little within individual variation in the observation period. 

 

Probit models including a lagged obesity status variable show evidence of strong state 

dependence as would be expected. CFCS remains statistically significant in these 

models suggesting that the effect of CFCS is not only due to those that are already 

obese at first observation having a higher CFCS score.  

 

The results from this study are generally supportive of previous findings for the effect 

of time preferences on obesity. This study adds to existing knowledge by making use 

of a larger sample to improve statistical power and by using econometric models for 

panel data to reduce omitted variable and reverse causality biases. A larger data set 

could further improve knowledge in this area, especially one with a larger number of 

waves of data for each individual. A data set with pseudo-random variation of time 

preferences suitable for methods such as instrumental variables regression could 

further strengthen causal inference but due to the nature of time preferences this is 

unlikely to be possible. 

 

Questions remain about the directness of the link between time preferences and 

obesity. Time preferences could be acting as a proxy for other psychological factors 

such as risk preferences, self-efficacy or locus of control. This could be further 

investigated by using a data-set that measures these variables. Intermediate factors in 

the chain from time preference to obesity would also be of interest. These may 

include environmental and psychological factors that could be targets for public 

health policies. 
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